

FINAL REPORT

 SecureDrop Security Analysis

Prepared for: Pablo Breuer

Innovation Officer

SOFWERX

1925 E 2nd Avenue, Suite 102

Tampa, FL 33605

November 2, 2018

© 2020 Leviathan Security Group Incorporated.

All Rights Reserved.

This document contains information, which is

protected by copyright and pre-existing non-

disclosure agreement between Leviathan

Security and Sofwerx.

No part of this document may be photocopied,

reproduced, or translated to another language

without the prior written and documented

consent of Leviathan Security Group and

Sofwerx.

Disclaimer

No trademark, copyright, or patent licenses are

expressly or implicitly granted (herein) with this

analysis, report, or white paper.

All brand names and product names used in this

document are trademarks, registered

trademarks, or trade names of their respective

holders. Leviathan Security Group is not

associated with any other vendors or products

mentioned in this document.

Version: Final

Prepared for: Sofwerx

Date: November 2, 2018

Confidentiality Notice

This document contains information confidential and proprietary to Leviathan Security Group and

Sofwerx. The information may not be used, disclosed or reproduced without the prior written

authorization of either party and those so authorized may only use the information for the purpose of

evaluation consistent with authorization. Reproduction of any section of this document must include this

notice.

 3

Table of Contents

Executive Summary .. 4

Observations ... 4

Recommendations.. 4

Vulnerability Classification... 6

Vulnerability Index .. 7

Observations & Analysis .. 9

Web Application .. 9

Threat Analysis ... 9

Methodology .. 9

Observed Trends ... 9

Vulnerabilities ... 11

Encryption and Privacy .. 14

Threat Analysis ... 14

Methodology .. 14

Observed Trends ... 14

Vulnerabilities ... 16

System Configuration and Deployment ... 17

Threat Analysis ... 17

Methodology .. 17

Observed Trends ... 17

Vulnerabilities ... 20

Future Work & Recommendations... 22

Develop Guidelines for Dealing with Compromise .. 22

Rewrite Cryptographic Libraries .. 22

Fix AuthN/AuthZ Issues .. 23

Fix Denial of Service Bug .. 23

Appendix A – Technical Services ... 24

Appendix B – Risk and Advisory Services .. 25

 4

Executive Summary

SofWerx engaged Leviathan Security in August of 2018 to perform a time-bound security review of

F d f h P F u d ’ SecureDrop project. The assessment officially kicked off September 25,

2018 and was completed on October 5, 2018.

Our objectives were to review the SecureDrop web application encryption standards, and deployment and

configuration recommendations for vulnerabilities that could lead to compromise, especially compromise

of the confidentiality of sources. Testing was informed by the SofWerx planned deployment model as well

as documentation and source code from the SecureDrop repository. We also reviewed issues reported by

the community via GitHub and triaged them.

Observations
While we did not find any critical- or high-severity issues in SecureDrop’ and design, we

did identify a number of areas that could be improved. Testing revealed an edge case that could prevent a

journalist from receiving messages because the system reports message receipt before the message is

actually sent. Another concern is that even though the SecureDrop system uses modern cryptographic

standards to secure data, the cryptographic libraries are written in Python, which has no mechanism for

removing secrets from memory after use. This issue applies only to those secrets not handled by GnuPG.

We also identified two aspects of SecureDrop documentation that are lacking. First, SecureDrop

documentation needs to be updated to explain what to do to protect the identity of sources if the system

is compromised. In addition, the OS software used by SecureDrop is reaching end-of-life. This issue is

being tracked in GitHub, but the documentation does not cover how to update grsecurity or the custom

kernel.

Finally, USB drives should not be used to transmit data either to or from an air-gapped system.

In summary, our review uncovered only medium- and low-severity findings.

Recommendations
Short-term recommendations:

• Provide documentation for dealing with a system compromise. This should include what to look

for as well as what to do.

• Rewrite cryptography libraries in C so that secrets can be scrubbed from memory.

• Do not use USB drives on the Secure Viewing Station; only use CD-Rs.

Long-term recommendations:

• Roll out custom pip mirrors for secure deployment that contain only vetted packages, or add

checksums for dependency packages and guard against installation of packages that do not have

a checksum.

 5

• Remediate remaining Git issues to address defense-in-depth.

• Upgrade to the newest LTS release of Ubuntu.

 6

Vulnerability Classification

Impact When we find a vulnerability, we assign it one of five categories of severity,

essentially describing the potential impact if an attacker were to exploit it:

Informational only – W f u d d h d ’ u h ,

bu u d h fu u f h g d Y u’ b b y

want to fix it.

Low – The vulnerability might allow an attacker to gain information that could be

combined with other vulnerabilities to carry out further attacks. It may also allow

an attacker to bypass auditing. H w , d ’ w direct access to data or

resources.

Medium – The vulnerability may allow access to systems or servers. It may also

allow access to confidential or sensitive data or a disruption in availability resulting

in damage to reputation. No actual access to data was obtained.

High – The vulnerability allows access directly to systems or servers. Confidentiality

and integrity of data may be impacted, availability may be disrupted. Damage to

reputation is likely.

Critical – This is a high-impact vulnerability that may imminently allow an attacker

to disrupt functionality, disclose data, resulting in significant reputational damage.

Skill Level to

Exploit

When we find a vulnerability, we also assess how skilled an attacker must be to

exploit it:

Simple – Only a minimal understanding of the underlying technology is required.

Tools and techniques for exploiting it can be easily found on the Internet.

Moderate – An attacker must have a working knowledge of the technology and

may also require the unwitting cooperation of a victim or target to carry out an

attack.

Advanced – Near-complete and superior understanding of the technology

involved is required. Direct interaction with the victim or target may also be

required.

 Skill Level to Exploit Rating (Weight) Severity

Im
p

a
ct

 R
a
ti

n
g

(W
e
ig

h
t)

 Critical (4) 4 8 12 Critical 10-12

High (3) 3 6 9 High 7-9

Medium (2) 2 4 6 Medium 4-6

Low (1) 1 2 3 Low 1-3

Advanced (1) Moderate (2) Simple (3)

 7

Vulnerability Index

Newly reported issues:

SEVERITY TITLE COMPONENT ID

Low Unhandled Exception on Some Inputs When Generating Sanitized

Filename

Web Application 83860

Low Add Documentation for Dealing with a Compromised System System Configuration and

Deployment

83889

Low Python Has no SecureString Class Encryption and Privacy 83857

Low Unhandled Exception If Journalist Calls Reply When User Has No Key Web Application 83859

Low User Prompted That Message Is Received Before It Completes Web Application 83858

Info Limit Use of Flash Drives System Configuration and

Deployment

83870

Previously reported issues:

SEVERITY TITLE COMPONENT REFERENCE

Medium Login for Journalists Not Throttled Web Application https://github.com/freedomofpress/securedrop

/issues/3566

Medium Sessions Do Not Expire If Admin

Changes Journalist Password

Web Application https://github.com/freedomofpress/securedrop

/issues/2300

Medium Sources Should Disappear Over

Time

Encryption & Privacy https://github.com/freedomofpress/securedrop

/issues/2068

Medium SecureDrop Application GPG Should

Have Expiration

Encryption & Privacy https://github.com/freedomofpress/securedrop

/issues/1139

Medium Python Package Download Process

Needs to Be Hardened

System Configuration

& Deployment

https://github.com/freedomofpress/securedrop

/issues/1617

Medium Expiration Dates Not Added to Apt

Repos

System Configuration

& Deployment

https://github.com/freedomofpress/securedrop

/issues/2436

Medium Reconfigure SSH System Configuration

& Deployment

https://github.com/freedomofpress/securedrop

/issues/1161

Low Kernel Needs to Be Hardened (e.g.,

Modules Should Be Pruned)

System Configuration

& Deployment

https://github.com/freedomofpress/securedrop

/issues/2726

Low Initial Submissions Stored in /tmp Web Application https://github.com/freedomofpress/securedrop

/issues/3067

Low SVG QR Codes Require Dropping

Safety Settings

Web Application https://github.com/freedomofpress/securedrop

/issues/1574

Low Remove JQuery Web Application https://github.com/freedomofpress/securedrop

/issues/1233

Low Improve Session Security Web Application https://github.com/freedomofpress/securedrop

/issues/204

Low Uploading Large Files Could De-

anonymize Users

Encryption & Privacy https://github.com/freedomofpress/securedrop

/issues/986

Low Remove Timestamps Encryption & Privacy https://github.com/freedomofpress/securedrop

/issues/822

https://github.com/freedomofpress/securedrop/issues/3566
https://github.com/freedomofpress/securedrop/issues/3566
https://github.com/freedomofpress/securedrop/issues/2300
https://github.com/freedomofpress/securedrop/issues/2300
https://github.com/freedomofpress/securedrop/issues/2068
https://github.com/freedomofpress/securedrop/issues/2068
https://github.com/freedomofpress/securedrop/issues/1139
https://github.com/freedomofpress/securedrop/issues/1139
https://github.com/freedomofpress/securedrop/issues/1617
https://github.com/freedomofpress/securedrop/issues/1617
https://github.com/freedomofpress/securedrop/issues/2436
https://github.com/freedomofpress/securedrop/issues/2436
https://github.com/freedomofpress/securedrop/issues/1161
https://github.com/freedomofpress/securedrop/issues/1161
https://github.com/freedomofpress/securedrop/issues/2726
https://github.com/freedomofpress/securedrop/issues/2726
https://github.com/freedomofpress/securedrop/issues/3067
https://github.com/freedomofpress/securedrop/issues/3067
https://github.com/freedomofpress/securedrop/issues/1574
https://github.com/freedomofpress/securedrop/issues/1574
https://github.com/freedomofpress/securedrop/issues/1233
https://github.com/freedomofpress/securedrop/issues/1233
https://github.com/freedomofpress/securedrop/issues/204
https://github.com/freedomofpress/securedrop/issues/204
https://github.com/freedomofpress/securedrop/issues/986
https://github.com/freedomofpress/securedrop/issues/986
https://github.com/freedomofpress/securedrop/issues/822
https://github.com/freedomofpress/securedrop/issues/822

 8

SEVERITY TITLE COMPONENT REFERENCE

Low HTML Pages Might Be

Fingerprintable

Encryption & Privacy https://github.com/freedomofpress/securedrop

/issues/2566

Low Sign OSSEC Alerts System Configuration

& Deployment

https://github.com/freedomofpress/securedrop

/issues/966

Low Explain Risks of Transferring Data by

USB

System Configuration

& Deployment

https://github.com/freedomofpress/securedrop

/issues/3598

https://github.com/freedomofpress/securedrop/issues/2566
https://github.com/freedomofpress/securedrop/issues/2566
https://github.com/freedomofpress/securedrop/issues/966
https://github.com/freedomofpress/securedrop/issues/966
https://github.com/freedomofpress/securedrop/issues/3598
https://github.com/freedomofpress/securedrop/issues/3598

 9

Observations & Analysis

Our analysis of the provided design documents is organized by topical area. For each area, we consider

how the proposed system supports the security of said system with respect to the design goals.

Web Application
The web application allows a user to interact with SecureDrop, which is composed of three main

interfaces: The Source Interface lets a user submit to journalists; the Journalist Interface lets a user

download or delete submitted information as well as reply to sources; and the Admin interface manages

Journalist users.

Threat Analysis

The web component contains the portions of the codebase that a user will interact with. This means that it

needs to be free of vulnerabilities common to web applications, such as XSS, SQL injection, and command

injection. Compromising the source or the journalist is equally damaging: Sources are assumed to need

anonymity to protect themselves from reprisals due to their use of the system, and impersonation of the

journalist could lead to opportunities for an attacker to suppress information or expose the source. Other

threats involve authentication and authorization. Session management, access controls, and secrets

management should all be handled using security best practices to protect the information being

exchanged and the bidirectional trust relationship between sources and journalists.

Methodology

The web application is written using the Flask framework in Python. We verified that protections built into

the framework are enabled and working. These include output sanitization with Jinja templating, CSRF

tokens, and form and parameter validation.

We verified that areas of the application that process user input have appropriate error handling so that

the application will not crash due to u ’ u f invalid data. Instances of insufficient error handling

leading to denial of service are identified as findings later in this section. We also verified that the web

application validates user inputs and does not simply assume they are well-formed.

Finally, we validated that authentication and authorization are appropriately handled. This included

ensuring that secrets are not hardcoded and are not displayed to any user, administrators are the only

users allowed to modify existing journalists, two-factor authentication is appropriately configured, and

sessions are handled with security best practices.

Observed Trends

Security was clearly considered when writing SecureDrop. Frameworks and libraries utilized were

configured to properly prevent common web vulnerabilities such as XSS, CSRF, and SQL injection. The

issues we identified both via our own code review and via existing issues on GitHub fell mostly into two

separate categories.

 10

The issues identified via code review mostly describe unhandled exceptions and logic issues in the code.

None of these are severe, but they may allow an attacker to impact the availability of the system for

journalists or for sources. Additionally, one of the issues we identified describes a situation wherein a user

is notified h h ub w d b f dd d h j u ’ interface. As a result, a

transient error could cause a message to be dropped even though the source believes it to have been

u d d, u g fu , u f h y , d qu d g f h u ’ w g h

Most of the GitHub issues for the web interface related to session management. Logins for a journalist are

not throttled, meaning that someone could attempt to brute force the login. Further, upon changing a

j u ’ w d f h d , h x g w u d b d d f h

database. Finally, the session management logic pertaining to sources may be subverted to leak some

information about them.

Existing GitHub issues:

Title Reference Severity

LOGIN FOR JOURNALISTS NOT

THROTTLED

https://github.com/freedomofpress/securedrop/issues/3566 Medium

SESSIONS DO NOT EXPIRE IF

ADMIN CHANGES JOURNALIST

PASSWORD

https://github.com/freedomofpress/securedrop/issues/2300 Medium

INITIAL SUBMISSIONS STORED IN

/TMP

https://github.com/freedomofpress/securedrop/issues/3067 Low

SVG QR CODES REQUIRE

DROPPING SAFETY SETTINGS

https://github.com/freedomofpress/securedrop/issues/1574 Low

REMOVE JQUERY https://github.com/freedomofpress/securedrop/issues/1233 Low

IMPROVE SESSION SECURITY https://github.com/freedomofpress/securedrop/issues/204 Low

https://github.com/freedomofpress/securedrop/issues/3566
https://github.com/freedomofpress/securedrop/issues/2300
https://github.com/freedomofpress/securedrop/issues/3067
https://github.com/freedomofpress/securedrop/issues/1574
https://github.com/freedomofpress/securedrop/issues/1233
https://github.com/freedomofpress/securedrop/issues/204

 11

Vulnerabilities

UNHANDLED EXCEPTION ON SOME INPUTS WHEN GENERATING

SANITIZED FILENAME

ID 83860

Component Web Application

Severity Low

Impact / Skill Level Low/Simple

Reference n/a

Location securedrop/store.py:L118

Observation

When a Source submits a file, it is possible for the filename sanitizer to return an empty string. This will

throw an exception that is not handled due to being unable to create the file. This could DoS the

application from the privilege of a Source.

When testing the gzip function with an empty string, it raised an exception that will be uncaught in this

scenario.

securedrop/store.py:L118

from werkzeug.utils import secure_filename

[...]

L118

def save_file_submission(self, filesystem_id, count, journalist_filename,

 filename, stream):

 sanitized_filename = secure_filename(filename)

[...]

 with SecureTemporaryFile("/tmp") as stf: # nosec

 with gzip.GzipFile(filename=sanitized_filename,

 mode='wb', fileobj=stf, mtime=0) as gzf:

Recommendation

Check the return value to ensure that it is not an empty string.

 12

UNHANDLED EXCEPTION IF JOURNALIST CALLS REPLY WHEN USER HAS

NO KEY

ID 83859

Component Web Application

Severity Low

Impact / Skill Level Low/Advanced

Reference n/a

Location securedrop/journalist_app/main.py:L105

securedrop/crypto_util.py:L213

Observation

An unhandled CryptoException will occur if the journalist calls Reply() before the Source has a

generated key. This could be used to DoS the application; however, it would require a custom request

from the privilege level of a journalist.

securedrop/journalist_app/main.py:L105

 current_app.crypto_util.encrypt(

 form.message.data,

 [current_app.crypto_util.getkey(g.filesystem_id),

 config.JOURNALIST_KEY],

 output=current_app.storage.path(g.filesystem_id, filename),

)

securedrop/crypto_util.py:L213

 out = self.gpg.encrypt(plaintext,

 *fingerprints,

 output=output,

 always_trust=True,

 armor=False)

 if out.ok:

 return out.data

 else:

 raise CryptoException(out.stderr)

Recommendation

Ensure that the user has a key before making this call, or add an exception handler.

 13

USER PROMPTED THAT MESSAGE IS RECEIVED BEFORE IT COMPLETES

ID 83858

Component Web Application

Severity Low

Impact / Skill Level Low/Advanced

Reference n/a

Location securedrop/source_app/main.py:L166

Observation

After a Source submits a message or file, they are prompted that the message was successfully

received. However, although the server has received it, the submission is never inserted in the database,

and the Source has not been marked as non-pending before the receive message occurs. This could

cause a journalist to miss a message that a Source believes was successfully sent.

securedrop/source_app/main.py:L166

html_contents = gettext('Thanks! We received your message.')

[...]

for fname in fnames:

 submission = Submission(g.source, fname)

 db.session.add(submission)

if g.source.pending:

 g.source.pending = False

Recommendation

Either place this message further into the function or create a script that will regularly ensure no files

exist on the system that have not been added into the database.

 14

Encryption and Privacy
The main promise behind SecureDrop is that it can provide a way to anonymously and securely upload

files to a journalist. In order to maintain user trust, the application needs to provide strong privacy

guarantees for sources who submit, d d d b y d j u ’ h e

is compromised.

Threat Analysis

Threats in this component fall into two areas: breaking the encryption of data, and leaking information

about the source who uploads information to a journalist. Breaking the encryption of the data could

involve either man-in-the-middle attacks on the data transfer or poor encryption on files that are stored

 h j u ’ h This would allow an attacker to be able to read sensitive data that is

shared. Given the nature of the content that is stored on this machine, leaking any of it would be

extremely severe. De-anonymizing the source is a risk as there are potential legal repercussions for

uploading information to this service. If a source experienced repercussions as a result of using

SecureDrop, it would make people wary of using the service again.

Methodology

The methodology here was to trace the dataflow in the source code for all user tainted information. The

Source only ever interacts with the source interface in the web application. This means we can analyze

every request through the routes implemented.

Encryption involves ensuring that best practices are used, as well as relying on a paranoid threat model for

all phases of the data lifecycle. The first step is to ensure that modern settings are used in cryptographic

algorithms. Additionally, keys for the encryption should not be easy to find, or else there is little reason to

encrypt. Finally, there should be no way to trick the code into decrypting the information for an

unprivileged user.

Observed Trends

Our review showed the encryption in the application is used appropriately and is well-implemented; we

did not identify any trivial attacks. In the appendix, we have included a flowchart depicting the data

transfer between the journalist and a source and the relevant parts of the cryptosystem design.

Appropriate key sizes and encryption algorithms are used.

Notwithstanding this, because SecureDrop is written in Python, the tenancy of secrets and sensitive data

in memory is a problem; the language runtime does not provide a means to scrub them. A forensic search

of the journalist’ machine or direct access to memory by an attacker could reveal those secrets or

sensitive data, including encryption passwords. SecureDrop partially treats this risk by recommending a

reboot of the computer running it every 24 hours, which limits the effect of a single retrospective search

but not of a persistent compromise. If the machine were seized and forensically searched after it had been

used following a reboot, at least some information would leak in spite of the reboot recommendation. The

 15

leaked information would include the h f h u ’ k y, valid codenames for sources, partial

contents of leaked files, and the AES key used to decrypt files present in /tmp. The codename could be

used to decrypt journalist replies.

Beyond this weakness to forensic searches, we note a number of potential ways to de-anonymize a

source. Traffic analysis remains a problem, in that a party interested in identifying the use of SecureDrop

could check for large file uploads or fingerprint the web pages that render the source interface if they had

 h u ’ etwork connection. In a related issue, SecureDrop uses timestamps that could

be used to correlate SecureDrop activity with other events in an investigation.

Although SecureDrop does not currently implement a GPG key expiration and rotation scheme (as

described in GitHub issue #1139), we suggest that doing so would limit the scope of impact in the event

that a key is revealed to an attacker. Although previously captured data cannot be protected from

attackers who later steal the key, a key rotation scheme would limit the number of documents that could

be so decrypted and would prevent the key from compromising documents indefinitely into the future.

Keys could be disclosed accidentally by journalists, and sources may not rotate the encryption keys they

use in this eventuality unless the rotation happens at regular intervals.

Existing GitHub vulnerabilities:

TITLE REFERENCE SEVERITY

SOURCES SHOULD DISAPPEAR OVER TIME

https://github.com/freedomofpress/securedrop/issues/2068 Medium

SECUREDROP APPLICATION GPG SHOULD

HAVE EXPIRATION

https://github.com/freedomofpress/securedrop/issues/1139 Medium

UPLOADING LARGE FILES COULD DE-

ANONYMIZE USERS

https://github.com/freedomofpress/securedrop/issues/986 Low

REMOVE TIMESTAMPS https://github.com/freedomofpress/securedrop/issues/822 Low

HTML PAGES MIGHT BE

FINGERPRINTABLE

https://github.com/freedomofpress/securedrop/issues/2566 Low

https://github.com/freedomofpress/securedrop/issues/2068
https://github.com/freedomofpress/securedrop/issues/1139
https://github.com/freedomofpress/securedrop/issues/986
https://github.com/freedomofpress/securedrop/issues/822
https://github.com/freedomofpress/securedrop/issues/2566

 16

Vulnerabilities

PYTHON HAS NO SECURESTRING CLASS

ID 83857

Component Encryption and Privacy

Severity Low

Impact / Skill Level Low/Advanced

Reference https://www.sjoerdlangkemper.nl/2016/06/09/clearing-memory-in-python/

Location N/A

Observation

When handling sensitive strings, such as the codename or passphrase for keys, Python stores them in

string objects. These are immutable in Python, which means that overwriting them is impossible. This

makes it easier for an attacker to leak sensitive information if they're able to read memory.

Recommendation

Rewrite crypto_utils and other potentially sensitive functions in a non-Python language that contains

lower level memory handling. Some instances will be impossible to fully fix, such as the receiving of

requests over the network. However, minimizing the number of instances of the string in memory will

be useful.

https://www.sjoerdlangkemper.nl/2016/06/09/clearing-memory-in-python/

 17

System Configuration and Deployment
The SecureDrop project provides documentation and installation scripts for deployment. Following the

default guidelines should produce a system with minimal attack surface and appropriate segmentation

that is resistant to compromise.

The underlying platform hosting SecureDrop applications should be kept updated to ensure that publicly

known or fixed security vulnerabilities in dependencies are promptly mitigated. Appropriate access

controls should be in place to limit the impact of an attacker successfully exploiting the system.

Documentation should be in place for maintaining the system and dealing with compromises.

Threat Analysis

S u D ’ d yment is critical to the anonymity of sources. An attacker could leverage a poor

configuration to gain entry, escalate privileges, or evade detection; any of these could contribute to the

compromise of a source and reduce confidence in SecureDrop.

If vulnerable network services are left exposed after installation, or if insecure update channels are used,

an attacker could compromise the system. In addition, insecure update channels could give an attacker a

foothold on the system. That foothold could be used to disclose confidential information from the system,

particularly if that information is not protected by data privilege segmentation at the operating system

level.

Finally, administrators must also have the means to detect a compromise and know exactly what to do in

case the system or encryption keys are compromised.

Methodology

We approached configuration and deployment by reviewing system design and documentation, and

reading code related to installation and maintenance. We reviewed the overall architecture for design

decisions that could impact security, including software choices and methods for transferring data. We

reviewed deployment guidelines in the documentation to make sure that administrators have enough

information to deploy a secure instance of SecureDrop. We reviewed Ansible playbooks, OSSEC rules, and

AppArmor profiles for anything that exposes SecureDrop to unnecessary risk.

Observed Trends

We found that if SecureDrop is deployed according to the documentation, using the described installation

scripts and configuration, the deployment will be secure. SecureDrop is built on top of Ubuntu 14.04 LTS,

which will only be supported through 2019. Further, SecureDrop developers provided a grsecurity

hardened version of the Ubuntu 14.4.5 kernel, which mitigates several exploitation vectors. It is imperative

that SecureDrop be updated with the Linux kernel and grsecurity patch set; this is a maintainability issue

because grsecurity no longer makes timely updates available to the open-source community as of early

2017. Because the LTS release of Ubuntu in use is about to become end-of-life, SecureDrop will have to

be tested against a newer version (e.g., 18.04), and this upgrade process will likely have to be repeated

 18

again in 2023. Existing installations will have to install the update. This is being tracked in GitHub issue

#3204, but that issue does not discuss grsecurity.

If applications are exploited, Docker and A A k ’ b y further compromise the

system by restricting file system access for Tor, Apache, and web applications. This control prevents an

attacker who can compromise one of those services from gaining a persistent compromise of the

anonymity and confidentiality of SecureDrop via means such as privilege escalation, though such a

compromise would still reduce the security of the system.

The documentation provides a detailed guide for setting up a pfSense hardware firewall with limited

internet and intranet connectivity. OSSEC is also used to help administrators monitor the integrity of the

system. This will help administrators know when to invoke incident response if OSSEC detects system

tampering.

We recommend adding documentation describing appropriate incident response plans in the event of a

compromise. Administrators must be made aware of when new keys need to be generated in order to

protect the identity of sources.

The documentation currently recommends using USB drives to transfer data from the journalist

workstation to the Secure Viewing Station. We suggest this recommendation be changed to use CD-R

media, since USB drives can provide for a bidirectional data flow, and malicious software could use them

as a vector to exfiltrate data from the Secure Viewing Station in violation of the Bell-LaPadula

Confidentiality Model; a CD-R would prevent a write operation disclosing encrypted data down to a lower

integrity level than the Secure Viewing Station.

Existing GitHub vulnerabilities:

TITLE REFERENCE SEVERITY

PYTHON PACKAGE DOWNLOAD PROCESS

NEEDS TO BE HARDENED

https://github.com/freedomofpress/securedrop/issues/1617 Medium

RECONFIGURE SSH https://github.com/freedomofpress/securedrop/issues/1161 Medium

EXPIRATION DATES NOT ADDED TO APT

REPOS

https://github.com/freedomofpress/securedrop/issues/2436 Medium

KERNEL NEEDS TO BE HARDENED (E.G.

MODULES SHOULD BE PRUNED)

https://github.com/freedomofpress/securedrop/issues/2726 Low

SIGN OSSEC ALERTS https://github.com/freedomofpress/securedrop/issues/966 Low

We investigated GitHub issue #3286 (“apt HTTP d f HTTPS”) and found that it should not be

a problem because apt verifies package digests from a signed manifest; this security control has been

widely discussed by the Linux community in the past. GitHub issue #1617, however, does have some

validity; although the requirements.txt file used to pull in Python packages specifies acceptable SHA256

https://github.com/freedomofpress/securedrop/issues/1617
https://github.com/freedomofpress/securedrop/issues/1161
https://github.com/freedomofpress/securedrop/issues/2436
https://github.com/freedomofpress/securedrop/issues/2726
https://github.com/freedomofpress/securedrop/issues/966

 19

digests, we suspect it does not have digests for the listed packages’ dependencies, and so the

dependency code is effectively untrusted.

 20

Vulnerabilities

ADD DOCUMENTATION FOR DEALING WITH A COMPROMISED SYSTEM

ID 83889

Component System Configuration and Deployment

Severity Low

Impact / Skill Level Low/Advanced

Reference n/a

Location docs.securedrop.org

Observation

SecureDrop may contain unknown vulnerabilities. Documentation should provide explicit remediation

guidelines regarding what to do if it is suspected that the system has been compromised.

Recommendation

We recommend completely wiping all SecureDrop systems and generating new keys for all parties. New

documents should not be generated with potentially leaked encryption keys. Old documents, including

those found on backup drives, should be re-encrypted with a new key.

 21

LIMIT USE OF FLASH DRIVES

ID 83870

Component System Configuration and Deployment

Severity Info

Impact / Skill Level Informational/Advanced

Reference https://github.com/freedomofpress/securedrop/issues/3598

Location docs.securedrop.org

Observation

The Secure Viewing Station's hardware should be physically isolated from any other network. Using USB

drives violates this standard and introduces unnecessary attack vectors.

SecureDrop documentation recommends using USB flash drives or CDs to transmit data to and from

the Secure Viewing Station. Malicious USB drive firmware could be used to exfiltrate data. This poses an

unnecessary amount of risk to Sources since exfiltrated data could be used to identify them.

Recommendation

Only use CD-Rs to move data to the Secure Viewing Station. If using flash drives is necessary, use a

high-quality write blocker to prevent exfiltration.

https://github.com/freedomofpress/securedrop/issues/3598

 22

Future Work & Recommendations

Develop Guidelines for Dealing with Compromise

S u D ’ d u h u d y h w d w h a compromise in order to minimize the

impact on sources. Having procedures in place will signal to sources that their anonymity is important.

The documentation would require research to correctly identify when a system should be considered

compromised. The documentation should minimize false positives and downtime while ensuring that the

threat has been appropriately mitigated.

Time Estimate: 10 Days

Task Days to Fix

Research 4

Writing: Identifying Compromise 3

Writing: Dealing with Compromise 3

Rewrite Cryptographic Libraries

Rewriting the cryptographic libraries would provide greater privacy of secrets. All relevant functions need

to be rewritten and tested thoroughly.

Time Estimate: 18 Days

Task Days to Fix

Rewrite crypto_util Library (1 class, 13 functions) 8

Write Tests 4

Test Modifications 4

Document Changes 2

 23

Fix AuthN/AuthZ Issues

There are several GitHub issues involving throttling logins, expiring sessions on password reset, and

preventing sensitive information from being leaked on the source session.

Time Estimate: 20 Days

Task Days to Fix

Write Fixes 10

Write Regression Tests 4

Test Modifications 4

Document Changes 2

Fix Denial of Service Bug

These are small fixes that should not take long to implement. They require time to write and test each

commit.

Time Estimate: 8 Days

Task Days to Fix

Write Fixes 2

Write Regression Tests 2

Test Modifications 2

Document Changes 2

Total Estimate: Maximum of 56 Days of Effort

 24

Appendix A – Technical Services
Leviathan's Technical Services group brings deep technical knowledge to your security needs. Our portfolio of services

includes software and hardware evaluation, penetration testing, red team testing, incident response, and reverse

engineering. Our goal is to provide your organization with the security expertise necessary to realize your goals.

SOFTWARE EVALUATION We provide assessments of application, system, and mobile code, drawing on our

employees' decades of experience in developing and securing a wide variety of applications. Our work includes

design and architecture reviews, data flow and threat modeling, and code analysis with targeted fuzzing to find

exploitable issues.

HARDWARE EVALUATION We evaluate new hardware devices ranging from novel microprocessor designs, to

embedded systems, to mobile devices, to consumer-facing end products, to core networking equipment that powers

Internet backbones.

PENETRATION & RED TEAM TESTING We perform high-end penetration tests that mimic the work of sophisticated

attackers. We follow a formal penetration testing methodology that emphasizes repeatable, actionable results that

give your team a sense of the overall security posture of your organization.

SOURCE CODE-ASSISTED SECURITY EVALUATIONS We conduct security evaluations and penetration tests based

on our code-assisted methodology, allowing us to find deeper vulnerabilities, logic flaws, and fuzzing targets than a

black-box test would reveal. This gives your team a stronger assurance that the significant security-impacting flaws

have been found and corrected.

INCIDENT RESPONSE & FORENSICS We respond to security incidents for our customers, including forensics,

malware analysis, root cause analysis, and recommendations for how to prevent similar incidents in the future.

REVERSE ENGINEERING We assist clients with reverse engineering efforts not associated with malware or incident

response. We also provide expertise in investigations and litigation by acting as experts in cases of suspected

intellectual property theft.

 25

Appendix B – Risk and Advisory Services
Leviathan's Retained Services group is a supplement to an organization's security and risk management capability. We

offer a pragmatic information security approach that respects our clients' appetites for security process and program

work. We provide access to industry leading experts with a broad set of security and risk management skills, which

gives our clients the ability to have deep technical knowledge, security leadership, and incident response capabilities

when they are needed.

INFORMATION SECURITY STRATEGY DEVELOPMENT We partner with boards, directors, and senior executives to

shape your enterprise's overall approach to meeting information security requirements consistently across an entire

organization.

ENTERPRISE RISK ASSESSMENT We develop an information asset-centric view of an organization's risk that

provides insight to your organization's Enterprise Risk Management capability. This service can be leveraged with

annual updates, to account for your organization's changing operations, needs, and priorities.

PRIVACY & SECURITY PROGRAM EVALUATION We evaluate your organization's existing security program to give

you information on compliance with external standards, such as ISO 27000 series, NIST CSF, HIPAA, or PCI-DSS

among others. This is often most useful before a compliance event or audit and helps to drive the next phase of

growth for your Security and Risk Management programs.

VENDOR RISK ASSESSMENT We assess the risk that prospective vendors bring to your organization. Our assessment

framework is compatible with legislative, regulatory, and industry requirements, and helps you to make informed

decisions about which vendors to hire, and when to reassess them to ensure your ongoing supply chain security.

NATIONAL & INTERNATIONAL SECURITY POLICY In 2014, we launched a public policy research and analysis

service that examines the business implications of privacy and security laws and regulations worldwide. We provide an

independent view of macro-scale issues related to the impact of globalization on information assets.

M&A/INVESTMENT SECURITY DUE DILIGENCE We evaluate the cybersecurity risk associated with a prospective

investment or acquisition and find critical security issues before they derail a deal.

LAW FIRM SECURITY SERVICES We work with law firms as advisors, to address security incidents and proactively

work to protect client confidences, defend privileged information, and ensure that conflicts do not compromise client

positions. We also work in partnership with law firms to respond to their clients' security needs, including in the role

of office and testifying expert witnesses.

SAAS AND CLOUD INITIATIVE EVALUATION We give objective reviews of the realistic threats your organization

faces both by moving to cloud solutions and by using non-cloud infrastructure. Our employees have written or

contributed to many of the major industry standards around cloud security, which allows their expertise to inform

your decision-making processes.

